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ABSTRACT
With the explosive growth of online social networks, it is now
well understood that social information is highly helpful to recom-
mender systems. Social recommendation methods are capable of
battling the critical cold-start issue, and thus can greatly improve
prediction accuracy. The main intuition is that through trust and in-
fluence, users are more likely to develop affinity toward items con-
sumed by their social ties. Despite considerable work in social rec-
ommendation, little attention has been paid to the important distinc-
tions between strong and weak ties, two well-documented notions
in social sciences. In this work, we study the effects of distinguish-
ing strong and weak ties in social recommendation. We use neigh-
bourhood overlap to approximate tie strength and extend the popu-
lar Bayesian Personalized Ranking (BPR) model to incorporate the
distinction of strong and weak ties. We present an EM-based algo-
rithm that simultaneously classifies strong and weak ties in a social
network w.r.t. optimal recommendation accuracy and learns latent
feature vectors for all users and all items. We conduct extensive
empirical evaluation on four real-world datasets and demonstrate
that our proposed method significantly outperforms state-of-the-art
pairwise ranking methods in a variety of accuracy metrics.

1. INTRODUCTION
Recommender systems are ubiquitous in our digital life. They

play a significant role in numerous Internet services and applica-
tions such as electronic commerce (Amazon and eBay), on-demand
video streaming (Netflix and Hulu), as well as social networking
(“People You May Know” feature of LinkedIn and Facebook). A
key task is to model user preferences and to suggest, for each user,
a personalized list of items that the user has not experienced, but
are deemed highly relevant to her.

Lots of recommendation techniques have been proposed in the
literature [15, 43]. When explicit feedback (numerical ratings) is
available, model-based collaborative filtering is among the most ef-
fective methods, e.g., low-rank matrix factorization [29]. We refer
the reader to Section 2 or references therein for more details.

However, when explicit feedback is not readily unavailable, we
may only have access to implicit feedback [24] derived from user
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actions such as viewing videos, clicking links, listening to songs,
etc. In fact, implicit feedback is more abundant than explicit [24,42]
in practice. Although collaborative filtering approaches can be
adapted [24], pairwise ranking methods have gained more trac-
tion lately [30, 39, 41, 42, 48]. This approach focuses on learning
the order of items (in user preferences). The Bayesian Personalized
Ranking (BPR) framework [42] is a fundamental pairwise ranking
method. In a nutshell, the core idea is to learn a personalized rank-
ing for each user based on the assumption that a user prefers an
observed item over all non-observed items. Here, an observed item
refers to any item that has been consumed by the user. When the
context is clear, we will use “observed” or “consumed” items in-
terchangeably. In [42], the authors further show that many scoring
methods can be integrated into BPR to learn the rankings, including
matrix factorization.

A critical yet common issue faced by recommender systems is
data sparsity, because the number of items is typically huge (e.g.,
hundreds of thousands) but users normally only consume a very
small subset of items. An even more challenging problem related
to data sparsity is that when new users join in a system, they have
no history records which can be utilized by the recommender sys-
tems to learn their preferences. This leads to the cold-start problem
and may result in suboptimal recommendations. To mitigate this
issue, many methods have been proposed to leverage social net-
work information in recommender systems [25, 26, 32–35, 46–48],
bringing about the field of social recommendation. Specifically for
BPR, Zhao et al. [48] propose the Social BPR (SBPR) model which
further assumes that among all non-observed items, a user prefers
those consumed by their social connections (or ties) to the rest. We
refer the reader to Section 2 for more details.

Although there exists previous work that aims at predicting tie
strength with social media [20] and analyzing roles of tie strength
in Q&A online networks [40], to the best of our knowledge, there
has been no systematic study on social tie strength and types in the
context of recommender systems, and more importantly, the extent
to which different social ties affect the quality of recommendations.
In his influential paper [21], Granovetter introduces different types
of social ties (strong, weak, and absent), and concludes that weak
ties are actually the most important reason for new information or
innovations to spread over social networks. In [22], through sur-
veys and interviews, Granovetter reports that many job seekers find
out useful information about new jobs through personal contacts.
Perhaps surprisingly, many of those personal contacts are acquain-
tances (weak ties) as opposed to close friends (strong ties) [18,22].

These insights from social sciences motivate us to study whether
distinguishing between strong and weak ties would make a differ-
ence for social recommendations in terms of prediction accuracy
(e.g., metrics such as precision, recall, and AUC). However, two
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major challenges arise. First, how to learn the label of each tie
(strong or weak) in a given social network? The sociology litera-
ture [21, 22] typically assumes the dyadic hypothesis: the strength
of a tie is determined solely by the interpersonal relationship be-
tween two individuals, irrespective of the rest of the network. For
instance, Granovetter uses the frequency of interactions to classify
strong and weak ties [22]. This is simple and intuitive, but it re-
quires user activity data that is hardly available to the public in
modern online social networks for security and privacy reasons1.
Second, assuming a reliable classification algorithm for learning
strong and weak ties, how can we effectively incorporate such
knowledge into existing ranking methods to improve recommen-
dation accuracy?

In this work, we tackle both challenges head on. We first adopt
Jaccard’s coefficient, a feature intrinsic to the network topology, to
compute tie strength [31, 37]. Intuitively, Jaccard captures the ex-
tent to which those users’ friendship circles overlap. Our choice is
endorsed by the studies on a large-scale mobile call graph by On-
nela et al. [37] (more details in Section 3). We define ties as strong
if their Jaccard’s coefficient is above some threshold, and as weak
otherwise. Note that the optimal threshold w.r.t. recommendation
accuracy will be learnt from the data.

Next, we extend the BPR model and propose a unified learning
framework that simultaneously (i) classifies strong and weak ties
w.r.t. optimal recommendation accuracy and (ii) learns a ranking
model that effectively leverages the learned tie types. We employ
the Expectation-Maximization algorithm [17] to alternatively learn
types of social ties and other model parameters including the la-
tent feature vector for each user and each item. Our experiments on
four real-world datasets clearly demonstrate the superiority of our
method over state-of-the-art methods.

To summarize, we make the following contributions.

• We recognize the effects of strong and weak social ties that
are evident in the sociology literature, and propose to incor-
porate these notions into social recommendation (Section 3).

• We propose a more fine-grained categorization of user-item
feedback for Bayesian Personalized Ranking (BPR) by lever-
aging the knowledge of tie strength and tie types (Section 4).

• We present an EM-style algorithm to simultaneously learn
the optimal threshold w.r.t. recommendation accuracy for
classifying strong and weak ties, as well as other parameters
(Section 5) in our extended BPR model.

• We carry out extensive experiments on four real-world
datasets and show that our solution significantly outperforms
existing methods in various accuracy metrics such as preci-
sion and recall (Section 6).

To the best of our knowledge, this is the first work recognizing
the important distinctions between strong and weak ties and lever-
aging them to improve social recommendation.

Before proceeding further, we now formalize the problem stud-
ied in this paper. Consider a recommender system, and let U and I
denote the set of users and items, respectively. There is also a social
network connecting the users, represented by an undirected graph
G = (U , E), where each node u ∈ U represents an individual user
and each edge (u, v) ∈ E indicates a tie between users u and v.
We know the set of items consumed by each user u, and our task
is to produce a personalized ranking (a total ordering of all items),
denoted <u, for all u ∈ U .
1https://en.wikipedia.org/wiki/Privacy_concerns_with_social_
networking_services

2. RELATED WORK
Substantial work has been done in recommender systems during

the past two decades. For systems with explicit feedback (numeri-
cal ratings), Collaborative Filtering (CF) has become the standard
approach for its accuracy and scalability. In general, there are two
kinds of CF methods: memory-based and model-based. Represen-
tative memory-based methods contain k-Nearest Neighbour (kNN)
user-user cosine similarity and item-item cosine similarity [15].
Typical model-based methods include low-rank matrix factoriza-
tion [28, 29, 44] which is also widely-adopted for other tasks such
as feature selection [2] and can be combined with various tech-
niques like deep learning for recommendation as well [1]. Since
this work focuses on implicit feedback, we simply refer the reader
to excellent surveys and monographs for more details [15, 43].

Recommender Systems with Implicit Feedback. Considerable
work has been done to address the problem of how to use just
implicit feedback to generate high quality recommendations. Oard
and Kim [36] identified several data sources to gather implicit feed-
back and suggested two types of recommendation strategies. The
first strategy is to infer explicit ratings that users are likely to pro-
duce and adopt available methods for explicit feedback. The sec-
ond one is directly infer user preferences without converting im-
plicit feedback to ratings. Das et al. [16] presented an online recom-
mendation algorithm for Google News where only click history of
each user is available (hence implicit). They describe a linear model
that combines three recommendation algorithms: collaborative fil-
tering using MinHash clustering, probabilistic Latent Semantic In-
dexing (pLSI), and co-visitation counts. Hu et al. [24] proposed to
transform implicit feedback into two paired quantities: preferences
and confidence levels and use both of them to learn a latent fac-
tor model. Unlike matrix factorization for explicit feedback, their
model takes all user-item pairs, including non-observed items, as an
input and is later extended for other recommendation tasks by oth-
ers [3]. Scalable learning algorithms are proposed to address the
(potentially) huge amount of input. Pan et al. [38] uses weighted
low-rank approximation and sampling techniques. First, different
weights are assigned to the error terms of observed items and non-
observed items in the objective function. Second, they sample non-
observed items as negative feedback, instead of using all of them.

All the aforementioned methods are often referred to as point-
wise, since they learn absolute preferences and then produce top-K
recommendations by simply sorting items by their scores in de-
scending order. Rendle et al. [42] proposed a novel pairwise learn-
ing method called Bayesian Personalized Ranking (BPR). Here the
focus is shifted to the learning of relative preferences. BPR trains
on pairs of items and the objective is to maximize the posterior like-
lihood of optimal personalized ranking, in which the assumption is
that for each user, observed items are preferred over non-observed
ones. Empirical results in [42] demonstrate that BPR coupled with
matrix factorization or kNN indeed outperform point-wise meth-
ods proposed in [24, 38]. Recently, Rendle and Freudenthaler [41]
introduced a more sophisticated sampling technique to improve the
convergence rate of BPR learning.

Social Ties in Social Media. Social ties have been widely stud-
ied in social science [10, 11, 21, 22]. There has been recent work
in Computer Science that pays attention to tie strength in social
media [4–8, 20, 40, 45] and with demographic data [9]. Specifi-
cally, Gilbert et al. [20] proposed a method for predicting social
tie strength and conducted a user-study experiment with over 2000
social media ties. Wu et al. [45] performed a regression analysis to
detect the professional and personal closeness between employees
in an IBM enterprise social network. Panovich et al. [40] employed
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Wu’s method to examine roles of tie strength in question and an-
swer online networks.

However, none of the above work leverages the theory of social
ties into recommender systems. On the other hand, existing work
in social recommendations (discussed below) do not take different
types of social ties into consideration.

Social Recommendation. In a nutshell, social recommendation
aims to exploit the effects of trust and influence to address the cold-
start problem, which may cause traditional CF methods to fail due
to lack of feedback data from cold-start users. Jamali et al. [25]
reported that in the Epinions dataset, about 50% of the users are
deemed cold-start (who rated less than five items). Considerable
work has been done in this domain [25, 26, 32–35, 46–48]. How-
ever, the overwhelming majority of those social recommendation
methods are designed for explicit feedback systems, with few ex-
ceptions.

Recently, Zhao et al. [48] extended the BPR framework by fur-
ther assuming that amongst all non-observed items, a user would
prefer items consumed by her social ties over the rest (which we
call “social items” hereafter for simplicity). In their SBPR model,
for each user u, the relative preference between any self-consumed
item i and any social item j is discounted by the number of u’s ties
who consumed j. That is, the more ties consumed j, the smaller
the gap is between i and j in the eyes of u. They also discussed
an alternative, opposite assumption, i.e., the social items are per-
ceived even more negatively than “non-social” items. Their experi-
ments showed that this alternative SBPR model is not as good as the
first one. We depart from SBPR by making orthogonal social-aware
extensions to BPR. In particular, we recognize the importance of
distinguishing between strong and weak ties and extend the BPR
model by incorporating such distinctions. The key difference lies
in the ranking of social items. In SBPR, social items are ranked
based on the number of friends who consumed the item, while in
our model, the ranking is based on tie types. Our empirical results
demonstrate that our new model significantly outperforms SBPR
and the vanilla BPR in terms of prediction accuracy, as measured
by six different metrics including precision, recall, etc (Section 6).

3. STRONG AND WEAK TIES
The theory of strong and weak ties has first been formulated by

Granovetter [21]. In terms of interpersonal relationship, strong ties
correspond to close friends that have high frequency of interactions,
while weak ties correspond to acquaintances. In terms of network
structures, strong ties tend to be clustered in a dense subgraph (e.g.,
the triangles (u, v, w) and (x, y, z) in Figure 1), while weak ties
tend to be “bridges” connecting two different connected compo-
nents, e.g., (u, x) in Figure 1.

There is an elegant connection between the above two perspec-
tives [18,21]. First, we say that a node u satisfies the Strong Triadic
Closure property if it does not violate the following condition: u
has two strong ties v and w but there exists no edge between v and
w. Furthermore, if a node u satisfies this property and is involved
in at least two strong ties, then any local bridges2 in which it is
involved must be a weak tie.

It is well understood that since weak ties typically do not belong
to the same social circle, they have access to different informa-
tion sources, and thus the information exchange have more nov-
elty [18, 21, 22]. Applying this insight to the context of social rec-
ommendation, our intuition is that the items previously consumed
by weak-tie friends might be of more interest to the user. For exam-
2(u, v) is a local bridge if the deletion of this edge results in u and
v to have a shortest path distance of 3 or longer.

u 

v w

x 

y z 

Figure 1: A sample social network

ple, a researcher may not be able to discover many interesting new
papers from her close collaborators, as they tend to focus on the
same topic and read the same set of papers. Instead, she may find
papers cited by other less frequent collaborators more appealing.

To incorporate the distinction between strong and weak ties into
social recommendation, we first need to be able to define and com-
pute tie strength, and then classify ties. Several possibilities exist.
First, as mentioned in Section 1, sociologists use dyadic measures
such as frequency of interactions [22]. However, this method is not
generally applicable due to lack of necessary data.

An alternative approach relies on community detection. Specifi-
cally, it first runs a community detection algorithm to partition the
network G = (U , E) into several subgraphs. Then, for each edge
(u, v) ∈ E , if u and v belong to the same subgraph, then it is clas-
sified as a strong tie; otherwise a weak tie. However, a key issue is
that although numerous community detection algorithms exist [19],
there is no consensual gold standard so it is unclear which one to
use. Furthermore, if a “bad” partitioning (w.r.t. prediction accuracy)
is produced and given to the recommender system as input, it would
be very difficult for the recommender system to recover. In other
words, the quality of recommendation would depend on an exoge-
nous community detection algorithm that the recommender system
has no control over. Hence, this approach is undesirable.

In light of the above, we resort to node-similarly metrics that
measure neighbourhood overlap of two nodes in the network. The
study of Onnela et al. [37] provides empirical confirmation of this
intuition: they find that (i) tie strength is in part determined by the
local network structure and (ii) the stronger the tie between two
users, the more their friends overlap. In addition, unlike frequency
of interactions, node-similarity metrics are intrinsic to the network,
requiring no additional data to compute. Also, unlike the commu-
nity detection based approach, we still get to choose a tie classi-
fication method that best serves the interest of the recommender
system.

More specifically, we use Jaccard’s coefficient, a simple
measure that effectively captures neighbourhood overlap. Let
strength(u, v) denote the tie strength for any (u, v) ∈ E . We have:

strength(u, v) =def
|Nu ∩Nv|
|Nu ∪Nv|

(Jaccard), (1)

where Nu ⊆ U (resp. Nv ⊆ U) denotes the set of ties of u (resp.
v). If Nu = Nv = ∅ (i.e., both u and v are singleton nodes), then
simply define strength(u, v) = 0. By definition, all strengths as
defined in Equation (1) fall into the interval [0, 1]. This definition
has natural probabilistic interpretations: Given two arbitrary users
u and v, their Jaccard’s coefficient is equal to the probability that a
randomly chosen tie of u (resp. v) is also a tie of v (resp. u) [31].

Thresholding. To distinguish between strong and weak ties, we
adopt a simple thresholding method. For a given social network
graph G, let θG ∈ [0, 1) denote the threshold of tie strength such
that

(u, v) is

{
strong, if strength(u, v) > θG ;

weak, if strength(u, v) ≤ θG .
(2)

Let Wu =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) ≤ θG}
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denote the set of all weak ties of u. Similarly, Su =def {v ∈ U :
(u, v) ∈ E ∧strength(u, v) > θG} denotes the set of all strong ties
of u. Clearly,Wu ∩ Su = ∅ andWu ∪ Su = Nu.

In our framework, the value of θG is not hardwired, but rather is
left for our model to learn (Section 5), such that the resulting clas-
sification of strong and weak ties in G, together with other learned
parameters of the model, leads to the best accuracy of recommen-
dations.

Finally, we remark that other node-similarity metrics can also
be used to define tie strength, e.g., Adamic-Adar [14] and Katz
score [27]. However, we note that the exact choice amongst these
node-similarly metrics is not the primary focus of this paper and is
orthogonal to our proposed learning framework.

4. THE TBPR MODEL: BPR WITH
STRONG AND WEAK TIES

In this section, we present our TBPR (BPR with Strong and Weak
Ties) model which incorporates the distinction of strong and weak
ties into BPR and ranks social items based on types of ties.

4.1 Categorizing Items
Having defined strong and weak ties, we are now ready to present

a key element in our TBPR model: For every user we categorize
all items into five types using the knowledge of strong and weak
ties, which we then exploit in our TBPR model. Here, we provide
a fine-grained categorization of non-observed items, especially the
social items, by leveraging strong and weak tie information derived
from the social network graph G. The proposed categorization is as
follows.

1. Consumed Items. For all u ∈ U , let Cselfu ⊆ I denote the
set of items consumed by u itself.

2. Joint-Tie-Consumed (JTC) Items. Any item i ∈ I \ Cselfu

that has been consumed by at least one strong tie of u and
one weak tie of u belongs to this category. We denote this set
by Cjointu = {i ∈ I \ Cselfu : ∃v ∈ Su s.t. i ∈ Cselfv ∧ ∃w ∈
Wu s.t. i ∈ Cselfw }

3. Strong-Tie-Consumed (STC) Items. If an item i ∈ I\Cselfu

is consumed by at least one strong tie of u, but not by u
itself or weak ties, then it belongs to this category. We denote
this set by Cstrongu = {i ∈ I \ Cselfu : ∃v ∈ Su s.t. i ∈
Cselfv ∧ @w ∈ Wu s.t. i ∈ Cselfw }.

4. Weak-Tie-Consumed (WTC) Items. This category can be
similarly defined: Cweak

u = {i ∈ I \ Cselfu : @v ∈ Su s.t. i ∈
Cselfv ∧ ∃w ∈ Wu s.t. i ∈ Cselfw }.

5. Non-Consumed Items. This category contains the rest of
the items (not consumed by u or any of u’s ties): Cnoneu =
{(u, i) : @x ∈ Su ∪Wu s.t. i ∈ Cselfx }.

Clearly, for all u ∈ U , Cselfu ∪Cjointu ∪Cstrongu ∪Cweak
u ∪Cnoneu = I.

In addition, those five sets are pairwise disjoint. Note that the union
of JTC, STC, and WTC items is the set of all social items for user
u.

4.2 Ordering Item Types
We now describe our TBPR model which distinguishes between

the aforementioned five types of items for every user. Same as the
original BPR, we assume no particular item scoring method [42].
However, for ease of exposition and its effectiveness, we use low-
rank matrix factorization [29], which is considered as a state-of-
the-art collaborative filtering method in the literature.
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(a) Tie strength (b) New citations

Figure 2: Histograms of tie strength and new citations for the
DBLP dataset

Assume that every user and every item in the system are rep-
resented by a d-dimensional latent feature vector: let Pu ∈ Rd
and Qi ∈ Rd denote the feature vector for an arbitrary user u
and an arbitrary item i, respectively. Here d is the number of la-
tent features. The inner product between a user feature vector and
an item feature vector measures the estimated affinity this user has
toward the item (a.k.a. predicted personalized score), denoted by
r̂ui =def 〈Pu,Qi〉. Since we deal with binary feedback in this
work, we have r̂ui ∈ [0, 1] for all u ∈ U and all i ∈ I.

In this paper, the proposed TBPR model imposes a total order-
ing of the five item types that specifies user preference. Indicated
by the good performance of BPR and its variants [39, 48], we also
assume that users prefer consumed items over others. Hence, con-
sumed items rank at the top of the ordering. Next, it is an open
question that whether users prefer WTC items to STC items, or
vice versa. Although we mentioned in Section 1 that the sociol-
ogy literature has suggested that weak ties are responsible for more
novel information to spread over the social network, it does not
automatically mean that WTC items are preferred.

To investigate the above question, we conduct a case study
using co-authorship and citation data extracted from the DBLP
Computer Science Bibliography (http://dblp.uni-trier.de/db/). The
DBLP dataset together with four other public datasets (Epinions,
Douban and Ciao) will be used to evaluate the performances of
different methods later in the experiment section. Recently some
work has been done on recommending papers to read or cite us-
ing the DBLP dataset [13], making it another appropriate experi-
mental dataset for us to test the performances of different recom-
mendation algorithms. Furthermore, the DBLP website provides
researchers with an API so that they can crawl their own datum
from the database for the purpose of scientific research, which en-
ables the possibility for us to obtain the information about the evo-
lution of co-authorship network and conduct this case study based
on the assumption that co-authorship network and citations follow
a similar pattern to social network and other user-item consumption
behaviours.

The network graph G = (U , E) is constructed as follows. First,
each node v ∈ U corresponds to an author satisfying both (i) she
co-authored at least ten papers and (ii) at least one of her papers
was published in or after 2009. If two authors u and v have co-
authored at least one paper before 2009, then there is an undirected
edge (u, v) ∈ E . As a result, the graph contains 13.6K nodes and
107K edges.

Figure 2(a) shows the distribution of tie strength as computed by
Equation (1). By definition, if two authors u and v have a strong tie,
then a relatively large overlap exists amongst their collaborators. As
we can see, the distribution is skewed toward weak tie strength.

Next, we analyze the citation data to see whether researchers are
more likely to cite papers that were previously cited by their weak
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ties as opposed to strong ties, or vice versa. We are interested in
the case of follow-up citations. For example, for any (u, v) ∈ E , if
there exists a paper cited by v but not by u before 2009, and u cited
this paper in or after 2009, then we say that u made one follow-up
citation to v. Note that, this definition eliminates all citations oc-
curred in papers co-authored by u and v, which are not interesting
to us. Figure 2(b) plots the number of follow-up citations against
tie strength. We can see that this distribution is also heavily skewed
toward weak tie strength. This suggests that from the perspective
of absolute number, researchers indeed tend to cite papers that are
previously cited by their weak ties.

Our two plots above are very consistent with those plots (with
Y axis showing the probability of job help instead of the number
of citations) presented in [12], a recent work by Gee et al. on how
strong ties and weak ties relate to job finding on Facebook’s social
network. Gee et al. use both mutual interactions and node similarity
(similar to Jaccard’s coefficient) to measure tie strength and find
results to be similar for both kinds of measures, which provides
further support for using Jaccard’s coefficient as our tie strength
measure. Readers may refer to [12] for more details. A conclusion
in their work is that weak ties are important collectively because
of their quantity, and strong ties are important individually because
of their quality. Reflected in our TBPR model, we can say that the
sets of WTC items are more helpful than the sets of STC items and
an individual STC item may be more helpful than an individual
WTC item. Thus giving the WTC items a higher probability to be
exposed (recommended) to users (i.e., ranking WTC items ahead
of STC items) should help to discover potentially more interesting
items. On the other hand, we also explore the opposite case of users
ranking STC items ahead of WTC items. As such, we test both
ranking strategies for completeness, in what follows, we present
two variants of our TBPR model.

4.3 Two Variants of TBPR
We are now ready to define two variants of TBPR, which differ

in the preference between WTC and STC items.
TBPR-W (Preferring Weak Ties). Mathematically, under the hy-
pothesis that WTC items are preferred to STC items, the complete
ordering is thus:

i <u j, if


i ∈ Cselfu ∧ j ∈ Cjointu or
i ∈ Cjointu ∧ j ∈ Cweak

u or
i ∈ Cweak

u ∧ j ∈ Cstrongu or
i ∈ Cstrongu ∧ j ∈ Cnoneu .

(3)

Note that Equation (3) gives a total ordering of the five types
due to transitivity, e.g., it also holds that i <u j if i ∈ Cselfu and
j ∈ Cnoneu .
TBPR-S (Preferring Strong Ties). Alternatively, we may also as-
sume that users prefer STC items to WTC items, in which case the
ordering can be expressed as:

i <u j, if


i ∈ Cselfu ∧ j ∈ Cjointu or
i ∈ Cjointu ∧ j ∈ Cstrongu or
i ∈ Cstrongu ∧ j ∈ Cweak

u or
i ∈ Cweak

u ∧ j ∈ Cnoneu .

(4)

When it is clear from the context, we use the generic name TBPR
to refer to both variants. The specific names TBPR-W and TBPR-S
will be used when it is necessary to distinguish between them (e.g.,
comparisons in experimental results).

5. PARAMETER LEARNING
In this section, we present the optimization objective and an EM-

style learning algorithm for our TBPR model. Without loss of gen-
erality, our presentation focuses on TBPR-W in which WTC items
are preferred over STC items. The case of TBPR-S is symmetric
and hence is omitted.

5.1 Optimization Objective
Let Θ denote the set of all parameters that consists of (i) the

tie strength threshold θG and (ii) the latent feature vectors: Pu for
each user u ∈ U and Qi for each item i ∈ I. The likelihood
function can thus be expressed as:

L(Θ) =
∏
u∈U

( ∏
i∈Cselfu

∏
j∈Cjointu

Pr[i <u j]

∏
j∈Cjointu

∏
w∈Cweak

u

Pr[j <u w]

∏
w∈Cweak

u

∏
s∈Cstrongu

Pr[w <u s]

∏
s∈Cstrongu

∏
k∈Cnoneu

Pr[s <u k]

)
, (5)

where the probabilities are defined using the sigmoid function fol-
lowing common practice [42]: δ(x) = 1

1+exp(−x) .

For instance, the probability that consumed items are preferred
over JTC items can be written as follows.

Pr[i <u j]

= δ(x̂ui − x̂uj)

=
1

1 + exp(−(x̂ui − x̂uj))

=
1

1 + exp(−〈Pu,Qi〉+ 〈Pu,Qj〉)
. (6)

All other probabilities except for the probability that WTC items
are preferred over STC items, namely Pr[w <u s], can be defined
similarly. We omit the formulas as they resemble Eq. (6) closely.

Incorporating the Tie Strength Threshold
Given a threshold θG , the degree of separation between strong ties
and weak ties imposed by this threshold can be quantitatively mea-
sured using the following formula:

g(θG) = (t̄s − θG)(θG − t̄w), (7)

where t̄s is the average strength of all strong ties classified accord-
ing to θG and likewise t̄w is the average strength of all weak ties.

A threshold θG that gives a large degree of separation g(θG) is
desirable. To incorporate the threshold into the objective function
so that our TBPR model is able to learn it in a principled manner,
we add a coefficient 1/g(θG) into the probability that WTC items
are preferred over STC items. More specifically, we define:

Pr[w <u s] = δ

(
x̂uw − x̂us
1 + 1/g(θG)

)
=

1

1 + exp
(
− x̂uw−x̂us

1+1/g(θG)

)
=

1

1 + exp
(
−〈Pu,Qw〉+〈Pu,Qs〉

1+1/g(θG)

) , (8)

where we use 1+1/g(θG) to discount (x̂uw− x̂us), the difference
between u’s predicted score for w and s. The intuition is that, if the
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current threshold θG does not separate the strong and weak ties well
enough, the likelihood that user prefers w (an WTC item given the
current threshold) to s (an STC items given the current threshold)
should be discounted. We use the reciprocal mainly for smoothness.

Putting It All Together
Our goal is to learn the best set of parameters that maximizes the
likelihood function L(·). This amounts to maximizing the loga-
rithm of L(·). Regularization terms are added to avoid overfitting:

r(Θ) = λp
∑
u∈U
||Pu||22 + λq

∑
i∈I
||Qu||22 + λθθ

2
G .

Putting it all together, our final maximization objective is
J (Θ) = lnL(Θ)− r(Θ)

=
∑
u∈U

( ∑
i∈Cselfu

∑
j∈Cjointu

ln δ(x̂ui − x̂uj)

+
∑

j∈Cjointu

∑
w∈Cweak

u

ln δ(x̂uj − x̂uw)

+
∑

w∈Cweak
u

∑
s∈Cstrongu

ln δ

(
x̂uw − x̂us
1 + 1/g(θG)

)

+
∑

s∈Cstrongu

∑
k∈Cnoneu

ln δ(x̂us − x̂uk)

)

− λp
∑
u∈U
||Pu||22 − λq

∑
i∈I
||Qu||22 − λθθ2G .

5.2 Learning Algorithm
We employ the Expectation-Maximization (EM) algorithm as

well as stochastic gradient descent to learn the parameters Θ that
maximize J (·). In the EM algorithm, the tie strength threshold θG
is treated as a hidden parameter to be learnt from the data.

The pseudocode of the learning algorithm is presented in Algo-
rithm 1. In the beginning, we randomly initialize the latent feature
vectors for all users and all items by sampling from the uniform dis-
tribution over the interval [0, 1]. We initialize the tie strength thresh-
old to be the median strength of all edges in the graph (Lines 1–3).
E-step. In each iteration t, given the current tie strength thresh-
old θ(t)G , we first compute, for each user, their five categories of
items (Line 6). Then, we take a total number of 100 · |U| sam-
ples as the training dataset to perform stochastic gradient descent.
For each sample r, we first draw a user u uniformly at random
from U , and then draw one item from each category for this user:
consumed (Cselfu ), JTC (Cjointu ), WTC (Cweak

u ), STC (Cstrongu ), and
non-consumed (Cnoneu ) (Lines 9–14). All samples are drawn inde-
pendently.

Notice that the pseudocode assumes all five item categories for
all users are non-empty. If any of the sets Cselfu , Cjointu , Cweak

u , and
Cstrongu is empty, we simply skip all relevant terms. The case of
Cnoneu = ∅ is uninteresting as that would mean the user has con-
sumed all items, and thus there is nothing left to rank for her.

Lastly, we compute the gradient of all corresponding feature vec-
tors and perform updates (Lines 15–16). Gradients are computed
using the following partial derivative formulas.
• The gradient of vector Pu, for any user u:
∂J
∂Pu

= δ(x̂uj − x̂ui)(Qi −Qj) + δ(x̂uw − x̂uj)(Qj −Qw)+

δ(x̂us − x̂uw)

1 + 1/g(θG)
(Qw −Qs) + δ(x̂uk − x̂us)(Qs −Qk)− λpPu

(9)

Algorithm 1: Learning Algorithm for TBPR-W

Input: users U , items I, consumed items Cselfu for each
u ∈ U , social network graph G = (V, E)

Output: Θ = {P ∈ R|U|×d,Q ∈ R|I|×d, θG}
1 P ∼ U(0, 1),Q ∼ U(0, 1)
2 t← 0 // iteration number

3 θ
(t)
G ← median tie strength in G

4 repeat
5 for u← 1 to |U| do
6 Compute Cselfu , Cjointu , Cstrongu , Cweak

u , Cnoneu using the
current tie strength threshold θ(t)G // cf.
Equation (2) and categorization
rules in Section 4.1

7 end
8 for r ← 1 to 100|U| do
9 u← a random user from U

10 i← a random consumed item from Cselfu

11 j ← a random JTC item from Cjointu

12 w ← a random WTC item from Cweak
u

13 s← a random STC item from Cstrongu

14 k ← a random non-consumed item from Cnoneu

15 Compute the gradients of Pu, Qi, Qj , Qw, Qs, and
Qk // Equation (9) - Equation (14)

16 Update the above feature vectors
// Equation (16)

17 end
18 Compute ∂J

∂θG
// Equation (15)

19 θ
(t+1)
G ← compute according to Equation (16) t← t+ 1

20 until convergence

• The gradient of vector Qi, where i ∈ Cselfu :

∂J
∂Qi

= δ(xuj − xui)Pu − λqQi (10)

• The gradient of vector Qj , where j ∈ Cjointu :
∂J
∂Qj

= (δ(xuw − xuj)− δ(xuj − xui))Pu − λqQj (11)

• The gradient of vector Qw, where w ∈ Cweak
u :

∂J
∂Qw

=

(
δ(xus − xuw)

1 + 1/g(θG)
− δ(xuw − xuj)

)
Pu − λqQw (12)

• The gradient of vector Qs, where s ∈ Cstrongu :
∂J
∂Qs

=

(
δ(xuk − xus)−

δ(xus − xuw)

1 + 1/g(θG)

)
Pu − λqQs (13)

• The gradient of vector Qj , where j ∈ Cnoneu :
∂J
∂Qk

= −δ(xuk − xus)Pu − λqQk (14)

M-step. After updating the feature vectors associated with all
100|U| samples, we update the tie strength threshold θG . The
derivative can be computed as follows:

∂J
∂θG

=
1

100|U|
∑

(u,w,s)

[
− λθθG+

δ(xus − xuw)(〈Pu,Qw〉 − 〈Pu,Qs〉)[(t̄w + t̄s)− 2θG ]

[(θG − t̄w)(t̄s − θG) + 1]2

]
(15)
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DBLP Ciao Douban Epinions
#users 13554 1141 13492 10306
#items 51877 11640 45282 109534

#non-zeros 488368 26507 2669675 375241
#ties (edges) 106730 15059 443753 230684

Table 1: Overview of datasets (#non-zeros means the number of
user-item pairs that have feedback)

where (u,w, s) denotes the user, WTC item, STC item tuple sam-
pled in one of the 100|U| samples.

In both the E-step and M-step, the update is done using standard
gradient descent:

x(t+1) = x(t) + η(t) ·
∂J
∂x

(x(t)), (16)

where x ∈ Θ denotes any model parameter. Finally, the algorithm
terminates when the absolute difference between the losses in two
consecutive iterations is less than 10−5.

6. EMPIRICAL EVALUATION
In this section, we conduct extensive experiments on four real-

world datasets and compare the performance of our TBPR-W and
TBPR-S models with different baseline methods based on various
evaluation metrics.

6.1 Experimental Settings
Datasets. We use the following four real-world datasets, whose ba-
sic statistics are summarized in Table 1.
• DBLP. This dataset contains information of author citation and

co-author network between 1960 and 2010, which is extracted
by us from the DBLP Computer Science Bibliography.
• Ciao. This dataset contains trust relationships between users

and ratings on DVDs. It was crawled from the entire category
of DVDs of a UK DVD community website http://dvd.ciao.
co.uk in December, 2013, and first introduced in [23].
• Douban. This dataset is extracted from the famous Chinese fo-

rum social networking site http://movie.douban.com/. It con-
tains user-user friendships and user-movie ratings, which is
publicly available3.
• Epinions. This dataset4 is extracted from the consumer re-

view website Epinions http://www.epinions.com/. The data
also contains user-user trust relationships and numerical rat-
ings.

Since ratings in Ciao, Douban and Epinions are all integers rang-
ing from 1 to 5, we “binarize” them into boolean datasets: we con-
sider items rated higher than 2 as consumed items. For DBLP, we
use all citations occurring before year 2009 as the training set and
leave all citations in or after 2009 for testing. For other datasets, we
randomly choose 80% of each user’s consumed items for training
and leave the remainder for testing.

Methods Compared. The following eight recommendation meth-
ods, including six baselines, are tested.
• TBPR-W. Our TBPR model with weak ties ranked above

strong ties (Equation 3).
• TBPR-S. Our TBPR model with strong ties ranked above weak

ties (Equation 4).
• BPR. The classic method proposed in [42], coupled with ma-

trix factorization for item scoring.
3https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
4http://www.trustlet.org/wiki/Epinions_dataset

• SBPR. The Social BPR method proposed in [48], using the
assumption that social items are ranked higher than non-social
items.
• SBPR-N. A naive version of SBPR which ranks social items

without considering the number of ties that consumed the
items. Comparisons between SBPR-N and TBPR is to show
that TBPR’s improvement over SBPR is irrespective of
whether the number of ties is considered or not.
• Implicit MF (WRMF). Weighted matrix factorization using a

point-wise optimization strategy for implicit user-item feed-
back [24].
• Random. Randomly sample the non-consumed items to form

a ranked list for each user.
• Most Popular. This is a non-personalized baseline which ranks

all items based on their global popularity, i.e., the number of
users that consumed an item.

All experiments are conducted on a platform with 2.3 GHz Intel
Core i7 CPU and 16 GB 1600 MHz DDR3 memory. Grid search
and 5-fold cross validation are used to find the best regularizer and
we set λu = λq = 0.01 and λθ = 0.1. The learning rate η of
stochastic gradient descent is set to 0.1 for θG and 0.01 for other
parameters.

Evaluation Metrics. The following metrics are used to measure
the prediction accuracy.
• Recall@K (Rec@K). This metric quantifies the fraction of

consumed items that are in the top-K ranking list sorted by
their estimated rankings. For each user u we define S(K;u)
as the set of already-consumed items in the test set that appear
in the top-K list and S(u) as the set of all items consumed by
this user in the test set. Then, we have

Recall@K(u) =
|S(K;u)|
|S(u)|

.

• Precision@K (Pre@K). This measures the fraction of the top-
K items that are indeed consumed by the user (test set):

Precision@K(u) =
|S(K;u)|

K
.

• Area Under the Curve (AUC).

AUC =
1

|U|
∑
u∈U

1

|Eu|
∑

(i,j)∈Eu

δ((xui − xuj) > 0),

where Eu = {(i, j)|i ∈ S(u) ∧ j ∈ I \ Cselfu } and (xui −
xuj) > 0 indicates that for user u, item i is ranked ahead of
item j.
• Mean Average Precision (MAP). Let C(u) be the set of user
u’s candidate items for ranking in the test set. The average
precision for u is:

AP(u) =
1

|S(u)|

|C(u)|∑
K=1

Precision@K(u),

and the mean average precision will be:

MAP =
1

|U|
∑
u∈U

AP (u).

• Mean Reciprocal Rank (MRR). Let R(u) be the ranking of
items inC(u) in descending order, then for any item i in S(u),
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Random Popular WRMF BPR SBPR-N SBPR TBPR-S TBPR-W Impv%

DBLP

Pre@5 0.000374 0.009642 0.029259 0.031081 0.031592 0.034522 0.033807 0.040680 17.8%†
Rec@5 0.000362 0.004552 0.026533 0.029588 0.029229 0.030541 0.030146 0.036152 18.4%†

AUC 0.491990 0.687722 0.823800 0.866391 0.863784 0.873853 0.867394 0.903863 3.43%†
MAP 0.001235 0.006007 0.026071 0.030382 0.029903 0.031865 0.031434 0.038393 20.5%†

NDCG 0.150952 0.171013 0.210249 0.224147 0.225434 0.231224 0.228612 0.241568 4.47%†
MRR 0.003341 0.038732 0.088439 0.093422 0.092076 0.095209 0.094304 0.106519 11.9%†

Ciao

Pre@5 0.001068 0.008219 0.016689 0.015152 0.015954 0.016752 0.016614 0.018497 10.4%†
Rec@5 0.000435 0.014629 0.019048 0.017522 0.017986 0.021813 0.021609 0.023532 7.88%†

AUC 0.508182 0.671325 0.727143 0.770230 0.770574 0.775404 0.770964 0.798210 2.94%†
MAP 0.001537 0.015193 0.017857 0.018991 0.018971 0.019704 0.019400 0.024158 22.6%†

NDCG 0.125384 0.167200 0.171261 0.175962 0.179664 0.186527 0.185729 0.199382 6.89%†
MRR 0.005500 0.033362 0.052541 0.050175 0.051811 0.054098 0.052668 0.060842 12.5%†

Douban

Pre@5 0.027144 0.137217 0.137844 0.154097 0.170087 0.170754 0.211767 0.170667 24.0%†
Rec@5 0.005559 0.023895 0.040620 0.025105 0.029743 0.038584 0.043969 0.038549 8.24%†

AUC 0.553510 0.839267 0.974293 0.971433 0.972291 0.972306 0.974195 0.972039 -0.01%‡
MAP 0.014030 0.057165 0.072330 0.077991 0.073461 0.078055 0.099851 0.078199 27.9%†

NDCG 0.299853 0.392563 0.385310 0.438571 0.434797 0.454351 0.488024 0.454644 7.41%†
MRR 0.077733 0.289429 0.301047 0.300290 0.356630 0.357672 0.437344 0.356532 22.3%†

Epinions

Pre@5 0.000132 0.016230 0.021320 0.022658 0.023797 0.024945 0.024802 0.026989 8.19%†
Rec@5 0.000040 0.014579 0.018795 0.020810 0.020552 0.021308 0.021819 0.023960 12.4%†

AUC 0.514609 0.784285 0.890701 0.894476 0.894034 0.901279 0.901306 0.918934 1.96%†
MAP 0.000703 0.012759 0.019503 0.021544 0.021663 0.022174 0.022452 0.024461 10.3%†

NDCG 0.126838 0.174815 0.195235 0.198665 0.199031 0.209530 0.207757 0.225629 7.68%†
MRR 0.001892 0.051963 0.067934 0.073059 0.073879 0.075097 0.073299 0.086588 15.3%†

Table 2: Performance evaluations on all users (boldface font denotes the winner in that row).

we denote its position in R(u) as rankui . Thus the mean re-
ciprocal rank is computed as follows:

MRR =
1

|U|
∑
u∈U

|S(u)|∑
i=1

1

rankui
.

• Normalized Discounted Cumulative Gain (NDCG). This is
widely used in information retrieval and it measures the qual-
ity of ranking through discounted importance based on posi-
tions. In recommender systems, NDCG is computed as fol-
lowing:

NDCG =
1

|U|
∑
u∈U

DCGu

IDCGu
,

where DCG and IDCG (Ideal Discounted Cumulative Gain)
are in turn defined as:

DCGu =
∑

i∈S(u)

1

log2(rankui + 1)
,

IDCGu =

|S(u)|∑
i=1

1

log2(i+ 1)
.

6.2 Results and Analysis
Table 2 demonstrates the performance of all eight recommenda-

tion methods on all four datasets, measured by six different accu-
racy metrics. We also conduct a paired difference test (dependent
t-test for paired samples) between TBPR (whichever version is bet-
ter) and the best baseline over all six metrics on each dataset. In
Table 2, † indicates that the result of a paired difference test is sig-
nificant at p < 0.05 with degree of freedom as #users − 1 on
each dataset and ‡ indicates the result is not significant. Generally
speaking, TBPR outperforms all six baselines in all but one cases
and moreover, all the results in which TBPR outperforms the best
baseline are statistically significant at p < 0.05.

TBPR Models vs. Baselines. For the sake of clarity, in the last
column of Table 2 we provide the relative improvement achieved by
TBPR-W or TBPR-S (whichever is better) over the best baseline,
determined on a row-by-row basis: E.g., for Pre@5 on Epinions,
the best baseline is SBPR.

We observe that TBPR, with very few exceptions, outperforms
the best baseline on all datasets and for all metrics. Considering the
different metrics, the gap between TBPR and the baselines is typi-
cally larger for Rec@5, Pre@5, MAP, and MRR, while the smallest
gaps are observed for AUC. BPR and SBPR are also quite strong
in terms of AUC. This is due to a clear connection between opti-
mizing AUC and the objective of BPR (and its extensions such as
SBPR and our TBPR). For lack of space, we omit the details and
refer the reader to [42].

In terms of datasets, the gap between TBPR and the baselines is
generally larger on DBLP and Douban. For DBLP, there are four
metrics (Pre@5, Rec@5, MAP, MRR) w.r.t. which TBPR’s im-
provement is above 10%; For Douban, the advantage is more appar-
ent: there are three metrics (Pre@5, MAP and MRR) w.r.t. which
TBPR’s improvement compared to the best baseline is 24.0%,
27.9% and 22.3%, respectively.

Note that although the two variants of TBPR assume reverse
ordering between STC (Strong-Tie-Consumed) items and WTC
(Weak-Tie-Consumed) items, they both outperform BPR. This may
appear unintuitive, as one may imagine that if one particular order-
ing performs well, the reverse ordering should give inferior perfor-
mance. To interpret these results, first recall that BPR only orders
consumed items ahead of all non-consumed ones (including social
and non-social), whereas both variants of TBPR order social items
ahead of non-social items. The fact that both TBPR variants beat
BPR actually further attests to the core intuition held by the large
body of work on social recommendation: users tend to prefer social
items to non-social items.

As to at least one variant of TBPR outperforming SBPR, recall
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Figure 3: Precision@K vs Recall@K on all users, where K ranges from 5 to 50
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Figure 4: Performance evaluations on cold-start users (Recall, Precision, MAP, MRR)

that the key difference between TBPR and SBPR is the internal
ordering amongst all social items of a user. SBPR “ranks” social
items based on the number of ties that consumed the items, while
the TBPR ordering is based on tie type. In fact, for any particu-
lar category of social items, e.g., WTC items, we do not impose
any further internal ordering. This being the case, one may argue
that the improvement of TBPR over SBPR might seem to lie in the
fact that SBPR takes into account the number of ties and TBPR
does not. Therefore we also implement a naive version of SBPR,
which ranks social items without taking the number of ties that
consumed the items into consideration. The comparisons demon-
strate that both variants of TBPR outperform SBPR-N, suggesting
that our idea of using tie type to categorize and rank social items is
better.

TBPR-S vs. TBPR-W. We observe from Table 2 that TBPR-W
beats TBPR-S on DBLP, Ciao, Epinions, while TBPR-S performs
better on Douban. This indicates that on average users in differ-
ent datasets may have different preferences over strong and weak
ties, which further raises a question that do different users actually
have distinct inherent biases toward STC items and WTC items?
In fact, this leads to an interesting direction for future work, which
is to personalize the ordering of STC and WTC items and learn it
for each individual user. It is, however, an open question whether
each user will have enough social items to allow the learning of a
personalized-ordering model.

Recall and Precision. Figure 3 depicts Recall (X-axis) vs. Preci-
sion (Y -axis) achieved by six recommendation methods. We ex-
clude Random since it is much worse than Most Popular. Data
points from left to right on each line were calculated at different
values of K, ranging from 5 to 50. Clearly, the closer the line is to
the top right corner (of the plot area), the better the algorithm is:
which indicates that both recall and precision are high. We can see
that either TBPR-W or TBPR-S dominates all baselines, consistent
with the findings in Table 2. In addition, the trade-off between re-
call and precision can be clearly observed from Figure 3.

Comparisons on Cold-Start Users. We further investigate the per-
formance of various recommendation methods on cold-start users.
As is common practice, we define users that consumed less than
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Figure 5: NDCG and AUC comparisons on cold-start users

Pre@5 Rec@5 AUC MAP NDCG MRR
DBLP 8.53% 10.8% 4.27% 0.14% 2.26% 0.88%

Ciao 28.0% 16.7% 0.73% 8.19% 7.69% 26.3%
Douban 49.6% 20.0% 0.80% 33.9% 17.6% 52.3%

Epinions 6.39% 16.8% 0.30% 8.61% 2.77% 11.6%

Table 3: Percentage improvement of TBPR (the better of TBRP-W
and TBPR-S) over the best basline on cold-start users

five items as cold-start. Table 3 demonstrates the percentage im-
provement of TBPR (the better of TBPR-S and TBPR-W) over the
best baseline. By comparing Tables 2 and 3, we can see that more
often than not, the improvement by TBPR is larger for cold-start
users. For instance, on Ciao and Douban, the improvement is larger
w.r.t. five out of all six metrics.

We further compare BPR, SBPR, and TBPR on all six metrics
in Figures 4 and 5. SBPR outperforms BPR in all cases, which
again confirms the benefit of taking social network information into
consideration for recommender systems. Note that in most cases,
TBPR-S is slightly better than TBPR-W. This is reasonable as cold-
start users may first rely on strong ties who are more trust-worthy
to them.

Finally, from our comprehensive experiments, it is fair to con-
clude that both TBPR-W and TBPR-S are effective social recom-
mendation methods based on their convincing performance on not
only all users, but also cold-start users.
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7. CONCLUSIONS AND FUTURE WORK
In this work, we present a new social recommendation method

for implicit feedback data. Motivated by the seminal work in sociol-
ogy by Granovetter [21,22], we recognize the effects of strong and
weak ties, in particular, the role played by weak ties in spreading
novel information over social networks. Our model is a non-trivial
extension to the Bayesian Personalized Ranking (BPR) model that
is aware of the important distinction between strong and weak ties
in social networks. We categorize “social items” (i.e., those not
consumed by a user herself, but were consumed by the user’s so-
cial ties) into three groups, depending on whether an item was con-
sumed by the user’s strong ties, weak ties, or both. We propose to
use Jaccard’s coefficient to compute tie strengths in a given social
network, and then devise an EM-style algorithm that is capable of
simultaneously learning the tie strength threshold and the latent fea-
ture vectors of all users and items. Our comprehensive experimental
results on four real-world datasets clearly demonstrate the efficacy
of our proposed methods and their superiority over existing pair-
wise recommendation models such as BPR [42] and SBPR [48], as
well as point-wise ones such as WRMF [24].

This work opens up plenty of opportunities for future research.
First, as pointed out in Section 6.2, we conjecture that an even more
personalized TBPR model warrants careful considerations, since it
is plausible that while some users prefer items consumed by weak
ties over those by strong ties, other users may behave in the op-
posite way. Also, it is interesting to learn personalized tie strength
thresholds. Namely, the model may assume each user is associated
with a different threshold for classifying strong and weak ties.

Another interesting future direction is to consider other node-
similarity metrics such as Adamic-Adar or Katz score, which can
be used in lieu of Jaccard for computing tie strengths: a compre-
hensive empirical comparison on various tie strength definitions is
worthwhile. Last but not the least, one may couple the TBPR model
with other item scorers like kNN, instead of matrix factorization.
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